
JOURNAL OF COMPUTATIONAL PHYSICS 77, 513-523 (1988) 

High Order Difference Methods for 
Linear Variable Coefficient Parabolic Equation* 

R. MANOHAR, S. R. K. IYENGAR,~ AND U. A. KRISHNAIAH~ 

Department of Mathemafics, Universily of Saskatchewan, Saskatoon, Canada S7N 0 WO 

Received January 23, 1987; revised June 29, 1987 

In this paper, we derive O(k2 + h4), two-level, three-point finite-difference methods for the 
solution of the general linear variable coelficient parabolic equation in one dimension u, = 
a(x) + b(x)u, + c(x)u, 0 <x < 1, t z 0 under suitable initial and boundary conditions. The 
stability of the new schemes is examined using a linear stability analysis. In particular, we 
derive unconditionally stable O(k2 + h4) methods for the solution of the convection-dilfusion 
type equation in cylindrical and spherical coordinates, viz. u, = u, + (a/x)u, + cu, 0 <a < 1 
or a = 1, 2. These methods are tested or two examples. 6 1988 Academic Press, Inc. 

1. INTRODUCTION 

The numerical solution of the general variable coefficient parabolic partial 
differential equation is of great interest in physics and applied mathematics. 
An O(k + h2) symmetrical semi-implicit scheme for the general heat conduction 
equation was formulated by Livne and Glasner [ 11. A comparative study of some 
explicit and implicit finite-difference schemes was done by Roberts and Selim [2] in 
the one-dimensional case. High order operator compact implicit methods for 
parabolic equations were discussed in [3,4]. Varah [S] had studied the stability 
restrictions on second-order, three-level finite-difference schemes for parabolic 
equations. Some monotone difference schemes for diffusion-convection problems 
were discussed by Stoyan [6]. In [7-93 some classes of extrapolation finite- 
difference methods for the numerical solution of a constant-coefficient, one-dimen- 
sional homogeneous parabolic equation were derived. These methods are of 0(/r*) 
in space direction while high order in time direction is obtained by extrapolation. 
Cash [lo] has shown that these methods can be interpreted as implicit 
Runge-Kutta formulas and derived two additional methods to solve the quasi- 
linear equation u, = au,, + f(u, u,), a constant. All these schemes are derived such 
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that the corresponding methods are L, stable. These methods are useful in solving 
parabolic equations having high frequency components occurring in the solution. It 
is well known that A, stable methods like Crank-Nicolson methods perform poorly 
on such problems. 

The numerical solution of the one-dimensional cylindrical heat conduction 
equation 

u, = u,, + u,/r (la) 

was dealt by Mitchell and Pearce [ 111 and Iyengar and Mittal [ 121. Mitchell and 
Pearce used the transformation r = 2x’/* and the mesh x = i*h. They have derived 
two explicit schemes and an implicit scheme. This implicit scheme has the same 
stability restriction as one of the two explicit schemes. Iyengar and Mittal have 
derived an O(k* + h4), two-level, three-point implicit-difference scheme with the 
stability limit on the mesh ratio parameter il< y. The truncation error of this 
scheme contains lower order derivatives which may entail some loss of accuracy 
because of the singularity at r = 0. So far no unconditionally stable, two-level, three- 
point implicit scheme of O(k2 + h4) is known. 

In this paper, we derive O(k* + h4), two-level, three-point difference methods for 
the solutionLof the one-dimensional parabolic equation 

u, = 4x)u,, + Hx)u, + C(X)% O6x~l,a(x)~O, (lb) 

under suitable initial and boundary conditions. The differential equation may have 
a singularity at one or both end points. A typical example is the convection- 
diffusion equation in the cylindrical and spherical coordinate systems 

24, = u,, + (a/x)u, + cu, c = constant 6 0. (lc) 

For Eq. (1 b) we have derived a method whose truncation error does not contain 
lower order derivatives with respect to x explicitly. Criteria for unconditional 
stability of the methods for (1 b) are derived and applied to some test equations. 
The stability of the difference method in the case of the convection-diffusion type 
equation in cylindrical and spherical coordinates is discussed using the general 
stability conditions. This method is unconditionally stable for c < 0 for all a con- 
sidered here. It is observed that this method produces the best order as h + 0, k + 0 
in the neighborhood of the singularity x = 0 compared to the methods whose trun- 
cation error contains lower order derivatives. For a fixed I (mesh ratio parameter), 
these methods behave like fourth-order methods. These methods are applied to two 
examples to demonstrate the fourth-order behaviour for fixed 1. All these methods 
produce a tridiagonal system for solution on each time level. Therefore, no 
additional computational effort is required in the implementation of the present 
method in comparison to the lower order methods. 
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2. DIFFERENCE METHODS 

Let us first consider a procedure to construct high ,order difference schemes for 
the equation 

4x)u,, + 4X)U.Y + c(x)u = f(x). (2) 

Consider the uniform mesh xj = x,, + j/z, j = 0( 1) N, where x0 = 0 and xN = 1, and 
write the Taylor series expansion of a, 6, c, U, andfabout a nodal point xj, which is 
taken as origin in the local coordinates. as 

a(x)=&x’, 

u(x) = c Ajxi, 

b(x) = c D,x’, 

f(x) = c d,x’. 

c(x) = c YiXj, 
(3) 

In order to obtain a difference scheme of fourth order we assume that A, E 0 
for j> 5 and, similarly, for the other coefficients in (3). Substituting (3) in (2) and 
comparing the successive powers of x, we get 

d; = i [(i-j+2)(i-j+ 1) Ai-j+2a, 
j=O 

+(‘-j+l)Aj-j+,pi+A,~,y,], i=O, 1,2,3,4. (4) 

We now write a linear combination of di as 

sodoh2+s,(d,h3+d3h5)+s,(d2h4+d,h6)= i QjAjh’. 
J=o 

But, we know that 

(5) 

(A,h + A,!I~)~ = 6,,uj/2 + O(h’) (64 

(Al/t2 + A4h4)/ = 6$4,/2 + 0(/f), (6b) 

where 6,,uj = uj+ , - ujPI and S;Uj = Uj+ 1 - 2uj + uj- , . Similar expressions hold 
for djs. Hence, we equate the coefficients of A,h, A3h3 and A2h2, A,h4 on the 
right-hand side of (5). Solving these equations, we get 

so = Plq2 - P241, SI =Bok?2 -2aop2, s2 =2aop, -Bohq,, (7) 

where 

p1 = 6a. + 2(3~r, + B,W- (& + m4, 

41 =u% + PO) - (2% + v2 + h)h21 

p2 = h[3(2~, + so) + 2(3~, + w?- (fi4 + y3)h4~ 

q2 = 12cro + 2(5cr, + fi,)h2 - (2cr, + 2f13 + y2)h4. 

03) 
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Using (6a) and (6b) and similar expressions for dj in (5), we write the method for 
the solution of (2) as 

where 

eo = h2CYoso + (Ylh + Y3h3b, + (?2h2 + Y4h4b21 

Q, = C6ao + (ha2 + 38, + ~dh~ls, + CWa, + Bdh + (ha3 + 3P2 + ~~~~~~~~ (10) 
Q2 = 4(3a, + &,)hs, + [12a, + ( 12a2 + 48, + yo)h2]s2. 

The truncation error of the method (9) is 

T.E. = 3 a$f(a, Dzu + 3p. D,u), + . . . , (11) 

where D; = ap/axp. Note that the leading term of the truncation error does not con- 
tain lower order derivatives of u and is independent of c(x) and its derivatives. 
When a(x), b(x), and c(x) are smooth functions or polynomials, it may not be 
necessary to include s, d3h5 + s2 d4h6 in (5). Even if these terms are excluded from 
(5) the method corresponding to (9) is still of fourth order with s,,, s,, s2, etc. being 
defined as 

so =p142 -P241, sI =Bohq2 -2aop2, s2 =2aop, -Pohq,, 

pI = 6a. - (PI + YEW*, p2 = W2a, + PO) - (B2 + Y ,P21, q1 = -2(a, + POW, 

q2 = 12a. - (2a2 + 2/?, + yo)h2, Qo =h’Cso~o +w,h+~2~2h~l, 
(12) 

Q, = 6a,s, + 3(2a, + Po).s2h, Q, = 12a,s,. 

The leading term of the truncation error now contains lower order derivatives and 
is given as 

T.E. = aoh6[ {5a, D”, + 10(/I, - 2a,) Di}f 

- 2a,( a0 DF$ + 3/?,D:) u]/5. (13) 

This method ((9) with (12)) has certain advantages. It does not contain aj, /?,, yj for 
j > 2. The derivatives a 1, a2, PI, /12, y, , and y2 need not be obtained by actual dif- 
ferentiation but may be replaced by the difference approximations ha, x 82xuj/2, 
h2a 2 x6$,/2, etc. of second order. The resulting method would still retain its 
fourth-order accuracy. However, when the differential equation has a singularity at 
one or both of the end points of the interval [O, 11, this formula does not produce 
accurate results of fourth order compared to the method (9) with (10) in the 
neighbourhood of the singularity. 

Replacing f;. in (9) by (au/at), and using the approximation (au/at), = 
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CV,/k(l-lV,)l jp h u w ere k is the mesh size in the t-direction, we get the difference 
method for the solution of (1) as 

[(2s, - AQ,,) + (s, - 0.5AQ,) 6,, + (s2 - 0.51Q,) Sz,] u,“’ ’ 

= [(2s, + lQo) + (s, + 0.51Q,) 6,, + (s2 + 0.5iQ,) S;] u,“, (14) 

where A = k/h*. We shall call (14) with (10) as “Method 1” and (14) with (12) as 
“Method 2.” The truncation error of Method 1 is 

T, = a;[ - 1 2k3u,,, + 3 kh4( a0 D’$ + 3& Diu)], + . . . (15) 

and the truncation error of Method 2 is 

where 

T2 = - 12crik3u,,, + kh4a, T* + . . . , (16) 

3. STABILITY OF THE DIFFERENCE SCHEMES 

The above methods can be written in the form 

(u,62,+6,~**+C,)#Jn+~=(u26~+b26*,+c*)u,”. (17) 

Using the von Neumann method, we find that the amplification factor of (17) 
satisfies 

[c, +2a,(x- 1)]*+4b;(l -x2) N+(D-N)’ (18) 

where x = cos(j?h), N and D stand for the numerator and denominator, respectively. 
Note that N> 0 and D > 0. For stability, we now require 

g(x)=D-N=c;-c;+4(1-x) 

x [(c*a* -c,a,)+(l -x)(L+a;)+(1 +x)(b;-b;)]>o. (19) 

Note that if ci = c2, then g(x) = 4( 1 -x) h(x) and hence we require h(x) > 0 since 
1x1 d 1. But h(x) is linear. Therefore, it is sufficient to have h( - 1) > 0 and h( 1) 2 0. 
This gives the conditions 

(a, -a*)Ma, +a,)--11 30 and c,(u* -u,)+2(+6:)>0. (20) 

If cl # c2 in (17) then we are required to satisfy (19). In this case, we require 
g( - 1) 2 0, g( 1) B 0, and in some cases g, B 0, where g, stands for the stationary 
value of g(x). 
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For Methods 1 and 2 we have 

We find that the method (14) is unconditionally stable when the following 
conditions are satisfied: 

1. c(x)-0; 

(so -WQ, 20 and Qzso - 2Q,s, 2 0. (22) 

2. c(x) #O; 

(4 If Q2s2 - Q 1s1 > 0, then Qoso 6 0 and (sO - 2s,)(2Q, - QO) 2 0. (23a) 

(b)(i) If 0 < 2Qls, + Q2so + QOs2 - 4Q,s2 < 4(Q,s, - Q2d, then 

C(2Q,s, - Qzso - Qos,)‘+4Qoso(Q,s, - Q2s2)l GO; (23b) 

(ii) otherwise, 

Q,s, -Q,s, ~0, Qoso do, (so -2s2MQ2 -Qo,aQ (23~) 

(c) A simple sufficient condition is 

$0 2 0, so -2s, >O, Q, 60, 2Q2 -Q, 20, Qls, GO. (23d) 

We now apply Methods 1 and 2 to the following test equations and determine the 
stability restrictions, using (21)-(23). 

Test Equation 1. u, = au,, + cu; a, c constants, a > 0, cd 0. Method 1 and 2: 
unconditionally stable. 

Test Equation 2. u, = au,, + bu,; a, b, constants, a k 0. As a + 0, the scalar test 
equation becomes the model hyperbolic test equation with no decay in the solution. 
For such equations, we require our formula to be conservative (151 = 1 ), since there 
is no attenuation of the Fourier coefficients. 

Method 1. Unconditionally stable for all b satisfying b2h2 < 24~~. The formula 
is conservative for the model hyperbolic equation. 

Method 2. Unconditionally stable for all b. The formula is also conservative 
for the model hyperbolic equation. 

We have also applied Methods 1 and 2 to the test equation u, = au,, + bu, + cu; 
a, b, c constants, a > 0, c #O. The stability conditions are clumsy because of the 
presence of the parameters b, c, a and are not reported here. If b(x) = 0 and c(x) = 0 
in (1 ), then Method 2 is unconditionally stable when cl0 2 0 and either 4a. 2 a2 h2 
or E: > C(~GI~ is satisfied. The first condition is usually satisfied in most of the cases. 

In general, given a(x), b(x), and c(x) we can test the conditions (22)-(23) to 
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determine whether the method (14) is unconditionally stable. This procedure is 
adopted in the following section. 

4. CONVECTION-DIFFUSION EQUATION IN POLAR COORDINATES 

Consider the general convection-diffusion equation 

c = constant < 0, (24) 

where 0 < c1< 1, c1= 1 or 2. For LZ = 1 and 2, (24) corresponds to the convection- 
diffusion problem in the cylindrical and spherical coordinates, respectively. The 
initial and boundary conditions are 

4x3 0) =./-i(x), u,(O, f) = 0, u(R, t) = gl(t)- (25) 

Substituting a(x) = 1, b(x) = a/x, and c(x) = c in Method 1, we get 

so =3[12-a(6+a)p2+a(4+a)p4], s1 =ap[3-(2+a)p2+(1 +a)p4], 

s,=6-a(2+a)p2+a(l+a)p4, Ql=Q:+ch2.s,, Q2=Qz+ch2s2, 

Q, = ch2s0, Q:=3ap[12-(a2+7a-2)p2+(l+a)(2+a)p4], 
(26) 

QT= 12[6-4ap2+a(l +a)p4], p=h/x,. 

For a=2, we find so =6s2, s, =ps2, Ql =(12+ch2)ps,, Q2 =(12+ch2)s2, and 
Q, = 6ch2s2 so that the factor s2 can be cancelled and the method has a simple 
form. Using the above stability conditions, we find that the method (14) with (26) 
is unconditionally stable for all c d 0 and for all a considered here. The truncation 
error in the Method 1 now becomes 

T.E.= -6u,,,k”+$kh4 D$+$D:u + .... (27) 

Consider now the case c = 0. As x + 0, we get from (24) 

u, = (1 + Cog,,. (28) 

For a = 1, we use the O(k2 + h4) scheme (see [12]), 

(5+12~)u;f+‘+(1-12~)24’l+‘=(5-12i)#;t+(1+121)2.4;, (29) 

valid at j = 0, where we have used the condition u,(O, t) = 0. Similarly, a O(k2 + h4) 
scheme valid at j = 0, when a = 2 is 

(5+18A)u;T+‘+(l-18%)ul(+‘=(5-181)24~+(1+181)24;. (30) 
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Application of these schemes requires the solution of an N x N tridiagonal system at 
each time level. Recently, in [ 131, a fourth-order difference method was derived for 
the solution of the singular two-point boundary value problem 

ux, + (alx)u, = f(x, u). (31) 

This method can also be generalized, to obtain an O(k* + h4) unconditionally stable 
scheme, to solve Eq. (24) when c = 0. We may write this method as 

[(sX -61s,)6?,+(s4-6~s2)Szx + 121~4,“~’ 

= [(s3 + 61~1) 6: + ($4 + 6As2) 62, + 12]~~!, (32) 

where 

s, = 1 -ssp~+sys~p4, s2 = p(a + s5 p2 - s5sg p4)/2, s3 = 1 - sg p*/5, 

s4 = PCs - ~~(2 - cOp2/51/2, s5 = a(2 - a)/12, se = (a* - 24)/60. 

The truncation error in the method (32) is 

T.E.= --k3urt, +$ D~u+~D~u-2(3+a)(2-a)~~u+6(2x~a) - U,,~ + . . . . 
x 1 

(33) 

Note that the truncation errors (27) and (33) are same for a = 2. However (for 
method (32)), when a = 2, we find tht s3 - s4 = 0 and s, -s2 = 0 for j= 1. This 
means that the point j= 0 does not enter the difference equations and the system 
degenerates to a (N - 1) x (N - 1) system. The solution at j = 0 can be obtained by 
interpolation using the numerical solutions at j = 1, 2, etc. As in [ 131 we may use 

u;l+‘=(144~;+‘-108u;+‘+48u;+‘-9u~+’)/75. (34) 

5. COMPUTATIONAL EXPERIMENTS 

Computations reveal that the solutions obtained by the methods (14) with (26), 
and (32) are almost identical in the following problems. Therefore, the results 
obtained by using (14) with (26) are reported. 

EXAMPLE 1. a = 1, c = 0 in (24) with 

24(x, 0) = Jo(a,x), 0 d x d 1; u,(O, t) = 0; U(1, t)=O, 

where a,, is the first root of Jo(a,) =O. The exact solution is U(X, t) = 
JO(aOx) exp( -a$). This problem is solved using (14) with (26), and (32) for h = 0.1 
and 0.05. The integration is done up to t = 3.0 for L = 0.5, 1, 3, 5. Small values of 2 
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are also used to test whether the methods are of fourth order as h + 0, k -+ 0 (for 
fixed jL). Even though a number of fourth-order methods (for a fixed 2) can be 
constructed using the above procedure, it is found that (14) with (26) produced the 
best order as h + 0, k + 0 in the neighbourhood of x = 0. Computational results 
reported in Table I, along with the results of [12], show the fourth-order 
convergence (for a fixed 2) of our methods. 

EXAMPLE 2. CI = 2, c = 0 in (24) with 

U(x,0)=1-x2,0~x<1, u,(O, t) = 0, u(1, t)=O. 

The exact solution is 

U(X,f)=fl~(-fi!n~‘sin(nnx)exp(-n2n2f), 
73x , 

This problem is solved using (14) with (26), and (32) for h = 0.1 and 0.05. Orders of 
the methods are again tested using small values of 1. The results are given in 
Table I. Computations show the fourth-order convergence (for fixed 1) of our 
methods. 

Absolute errors at r = 0 for small t and small I, for both Examples 1 and 2, are 
given in Table II along with the results obtained by the Crank-Nicolson O(k2 + h2) 
scheme. These results also exhibit the O(h4) behaviour of Method 1 on r = 0 even 
for small 1, and t. 

TABLE I 

Maximum Absolute Errors in the Solution 

Example 1 Ref. [12] Example 2 

A t h=O.l h = 0.05 h=O.l h=O.l h = 0.05 

0.5 0.75 0.259( - 5) 0.160( -6) 0.905( - 6) 0.573( -7) 
1.50 0.683( - 7) 0.424( - 8) 0.810( -7) 0.109( -8) 0.688( - 10) 
3.00 0.234( - 10) 0.146(-11) 0.279( - 10) 0.807( - 15) 0.508( - 16) 

1.0 0.75 0.143( -4) 0.898( - 6) 0.423( -5) 0.265( -6) 
1.50 0.376( -6) 0.235( - 7) 0.405( - 6) 0.514( -8) 0.323( -9) 
3.00 0.129(-9) O.SOS( - 1 1) 0.139( -9) 0.380( - 14) 0.240( - 1) 

3.0 0.75 0.140( -3) 0.879( - 5) 0.393( -4) 0.249( - 5) 
1.50 0.366( - 5) 0.230( -6) 0.375( -5) 0.460( - 7) 0.303( -8) 
3.00 0.124( -8) 0.785( - 10) 0.127( -8) 0.978( - 12) 0.225( - 14) 

5.0 0.75 0.391(-3) 0.246( - 4) O.l06( -3) 0.693( - 5) 
1.50 0.103( -4) 0.642( -6) 0.103( -4) 0.340( - 6) 0.842( -8) 
3.00 0.682( - 8) 0.219( -9) 0.347( - 8) 0.840( - 10) 0.620( - 14) 
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It is found that the maximum error generally occurs on r = 0 or h for all t, A and 
the difference between the errors on r= 0, h is marginal. From these numerical 
results, it can be seen that the proposed higher order methods produce accurate 
results and the error decreases at a faster rate than the lower order methods. The 
computational effort is almost the same as required for the lower order methods. 
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