High Order Difference Methods for Linear Variable Coefficient Parabolic Equation*

R. Manohar, S. R. K. Iyengar, ${ }^{\dagger}$ and U. A. Krishnaiah ${ }^{\ddagger}$
Department of Mathematics, University of Saskatchewan, Saskatoon, Canada S7N 0W0

Received January 23, 1987; revised June 29, 1987

Abstract

In this paper, we derive $O\left(k^{2}+h^{4}\right)$, two-level, three-point finite-difference methods for the solution of the general linear variable coefficient parabolic equation in one dimension $u_{t}=$ $a(x) u_{x x}+b(x) u_{x}+c(x) u, 0 \leqslant x \leqslant 1, t>0$ under suitable initial and boundary conditions. The stability of the new schemes is examined using a linear stability analysis. In particular, we derive unconditionally stable $O\left(k^{2}+h^{4}\right)$ methods for the solution of the convection-diffusion type equation in cylindrical and spherical coordinates, viz. $u_{t}=u_{x x}+(\alpha / x) u_{x}+c u, 0<\alpha<1$ or $\alpha=1,2$. These methods are tested or two examples. © 1988 Academic Press, Inc.

1. Introduction

The numerical solution of the general variable coefficient parabolic partial differential equation is of great interest in physics and applied mathematics. An $O\left(k+h^{2}\right)$ symmetrical semi-implicit scheme for the general heat conduction equation was formulated by Livne and Glasner [1]. A comparative study of some explicit and implicit finite-difference schemes was done by Roberts and Selim [2] in the one-dimensional case. High order operator compact implicit methods for parabolic equations were discussed in [3, 4]. Varah [5] had studied the stability restrictions on second-order, three-level finite-difference schemes for parabolic equations. Some monotone difference schemes for diffusion-convection problems were discussed by Stoyan [6]. In [7-9] some classes of extrapolation finitedifference methods for the numerical solution of a constant-coefficient, one-dimensional homogeneous parabolic equation were derived. These methods are of $O\left(h^{2}\right)$ in space direction while high order in time direction is obtained by extrapolation. Cash [10] has shown that these methods can be interpreted as implicit Runge-Kutta formulas and derived two additional methods to solve the quasilinear equation $u_{t}=a u_{x x}+f\left(u, u_{x}\right)$, a constant. All these schemes are derived such

[^0]that the corresponding methods are L_{0} stable. These methods are useful in solving parabolic equations having high frequency components occurring in the solution. It is well known that A_{0} stable methods like Crank-Nicolson methods perform poorly on such problems.

The numerical solution of the one-dimensional cylindrical heat conduction equation

$$
\begin{equation*}
u_{t}=u_{r r}+u_{r} / r \tag{1a}
\end{equation*}
$$

was dealt by Mitchell and Pearce [11] and Iyengar and Mittal [12]. Mitchell and Pearce used the transformation $r=2 x^{1 / 2}$ and the mesh $x=i^{2} h$. They have derived two explicit schemes and an implicit scheme. This implicit scheme has the same stability restriction as one of the two explicit schemes. Iyengar and Mittal have derived an $O\left(k^{2}+h^{4}\right)$, two-level, three-point implicit-difference scheme with the stability limit on the mesh ratio parameter $\lambda<\frac{242}{9}$. The truncation error of this scheme contains lower order derivatives which may entail some loss of accuracy because of the singularity at $r=0$. So far no unconditionally stable, two-level, threepoint implicit scheme of $O\left(k^{2}+h^{4}\right)$ is known.

In this paper, we derive $O\left(k^{2}+h^{4}\right)$, two-level, three-point difference methods for the solution ${ }^{2}$ of the one-dimensional parabolic equation

$$
\begin{equation*}
u_{t}=a(x) u_{x x}+b(x) u_{x}+c(x) u, \quad 0 \leqslant x \leqslant 1, a(x) \geqslant 0 \tag{1b}
\end{equation*}
$$

under suitable initial and boundary conditions. The differential equation may have a singularity at one or both end points. A typical example is the convectiondiffusion equation in the cylindrical and spherical coordinate systems

$$
\begin{equation*}
u_{t}=u_{x x}+(\alpha / x) u_{x}+c u, \quad c=\text { constant } \leqslant 0 \tag{1c}
\end{equation*}
$$

For Eq. (1b) we have derived a method whose truncation error does not contain lower order derivatives with respect to x explicitly. Criteria for unconditional stability of the methods for (1b) are derived and applied to some test equations. The stability of the difference method in the case of the convection-diffusion type equation in cylindrical and spherical coordinates is discussed using the general stability conditions. This method is unconditionally stable for $c \leqslant 0$ for all α considered here. It is observed that this method produces the best order as $h \rightarrow 0, k \rightarrow 0$ in the neighborhood of the singularity $x=0$ compared to the methods whose truncation error contains lower order derivatives. For a fixed λ (mesh ratio parameter), these methods behave like fourth-order methods. These methods are applied to two cxamples to demonstrate the fourth-order behaviour for fixed λ. All these methods produce a tridiagonal system for solution on each time level. Therefore, no additional computational effort is required in the implementation of the present method in comparison to the lower order methods.

2. Difference Methods

Let us first consider a procedure to construct high order difference schemes for the equation

$$
\begin{equation*}
a(x) u_{x x}+b(x) u_{x}+c(x) u=f(x) \tag{2}
\end{equation*}
$$

Consider the uniform mesh $x_{j}=x_{0}+j h, j=0(1) N$, where $x_{0}=0$ and $x_{N}=1$, and write the Taylor series expansion of a, b, c, u, and f about a nodal point x_{j}, which is taken as origin in the local coordinates, as

$$
\begin{array}{ll}
a(x)=\sum \alpha_{j} x^{j}, & b(x)=\sum \beta_{j} x^{j}, \\
u(x)=\sum A_{j} x^{j}, & f(x)=\sum \gamma_{j} x^{j} \tag{3}\\
\\
d_{j} x^{j},
\end{array}
$$

In order to obtain a difference scheme of fourth order we assume that $A_{j} \equiv 0$ for $j \geqslant 5$ and, similarly, for the other coefficients in (3). Substituting (3) in (2) and comparing the successive powers of x, we get

$$
\begin{align*}
d_{i}= & \sum_{j=0}^{i}\left[(i-j+2)(i-j+1) A_{i-j+2} \alpha_{j}\right. \\
& \left.+(i-j+1) A_{i-j+1} \beta_{j}+A_{i-j} \gamma_{j}\right], \quad i=0,1,2,3,4 . \tag{4}
\end{align*}
$$

We now write a linear combination of d_{i} as

$$
\begin{equation*}
s_{0} d_{0} h^{2}+s_{1}\left(d_{1} h^{3}+d_{3} h^{5}\right)+s_{2}\left(d_{2} h^{4}+d_{4} h^{6}\right)=\sum_{j=0}^{4} Q_{j} A_{j} h^{j} \tag{5}
\end{equation*}
$$

But, we know that

$$
\begin{align*}
\left(A_{1} h+A_{3} h^{3}\right)_{j} & =\delta_{2 x} u_{j} / 2+O\left(h^{5}\right) \tag{6a}\\
\left(A_{2} h^{2}+A_{4} h^{4}\right)_{j} & =\delta_{x}^{2} u_{j} / 2+O\left(h^{6}\right) \tag{6b}
\end{align*}
$$

where $\delta_{2 x} u_{j}=u_{j+1}-u_{j-1}$ and $\delta_{x}^{2} u_{j}=u_{j+1}-2 u_{j}+u_{j-1}$. Similar expressions hold for d_{j} 's. Hence, we equate the coefficients of $A_{1} h, A_{3} h^{3}$ and $A_{2} h^{2}, A_{4} h^{4}$ on the right-hand side of (5). Solving these equations, we get

$$
\begin{equation*}
s_{0}=p_{1} q_{2}-p_{2} q_{1}, \quad s_{1}=\beta_{0} h q_{2}-2 \alpha_{0} p_{2}, \quad s_{2}=2 \alpha_{0} p_{1}-\beta_{0} h q_{1} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& p_{1}=6 \alpha_{0}+2\left(3 \alpha_{2}+\beta_{1}\right) h^{2}-\left(\beta_{3}+\gamma_{2}\right) h^{4} \\
& q_{1}=h\left[2\left(5 \alpha_{1}+\beta_{0}\right)-\left(2 \alpha_{3}+2 \beta_{2}+\gamma_{1}\right) h^{2}\right] \\
& p_{2}=h\left[3\left(2 \alpha_{1}+\beta_{0}\right)+2\left(3 \alpha_{3}+\beta_{2}\right) h^{2}-\left(\beta_{4}+\gamma_{3}\right) h^{4}\right] \tag{8}\\
& q_{2}=12 \alpha_{0}+2\left(5 \alpha_{2}+\beta_{1}\right) h^{2}-\left(2 \alpha_{4}+2 \beta_{3}+\gamma_{2}\right) h^{4}
\end{align*}
$$

Using (6a) and (6b) and similar expressions for d_{j} in (5), we write the method for the solution of (2) as

$$
\begin{equation*}
h^{2}\left[2 s_{0}+s_{1} \delta_{2 x}+s_{2} \delta_{x}^{2}\right] f_{j}=\left[2 Q_{0}+Q_{1} \delta_{2 x}+Q_{2} \delta_{x}^{2}\right] u_{j} \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& Q_{0}=h^{2}\left[\gamma_{0} s_{0}+\left(\gamma_{1} h+\gamma_{3} h^{3}\right) s_{1}+\left(\gamma_{2} h^{2}+\gamma_{4} h^{4}\right) s_{2}\right] \\
& Q_{1}=\left[6 \alpha_{0}+\left(6 \alpha_{2}+3 \beta_{1}+\gamma_{0}\right) h^{2}\right] s_{1}+\left[3\left(2 \alpha_{1}+\beta_{0}\right) h+\left(6 \alpha_{3}+3 \beta_{2}+\gamma_{1}\right) h^{3}\right] s_{2} \tag{10}\\
& Q_{2}=4\left(3 \alpha_{1}+\beta_{0}\right) h s_{1}+\left[12 \alpha_{0}+\left(12 \alpha_{2}+4 \beta_{1}+\gamma_{0}\right) h^{2}\right] s_{2}
\end{align*}
$$

The truncation error of the method (9) is

$$
\begin{equation*}
\text { T.E. }=\frac{3}{5} \alpha_{0}^{2} h^{6}\left(\alpha_{0} D_{x}^{6} u+3 \beta_{0} D_{x}^{5} u\right)_{j}+\cdots \tag{11}
\end{equation*}
$$

where $D_{x}^{p}=\partial^{p} / \partial x^{p}$. Note that the leading term of the truncation error does not contain lower order derivatives of u and is independent of $c(x)$ and its derivatives. When $a(x), b(x)$, and $c(x)$ are smooth functions or polynomials, it may not be necessary to include $s_{1} d_{3} h^{5}+s_{2} d_{4} h^{6}$ in (5). Even if these terms are excluded from (5) the method corresponding to (9) is still of fourth order with s_{0}, s_{1}, s_{2}, etc. being defined as

$$
\begin{align*}
& s_{0}=p_{1} q_{2}-p_{2} q_{1}, \quad s_{1}=\beta_{0} h q_{2}-2 \alpha_{0} p_{2}, \quad s_{2}=2 \alpha_{0} p_{1}-\beta_{0} h q_{1} \\
& p_{1}=6 \alpha_{0}-\left(\beta_{1}+\gamma_{0}\right) h^{2}, p_{2}=h\left[3\left(2 \alpha_{1}+\beta_{0}\right)-\left(\beta_{2}+\gamma_{1}\right) h^{2}\right], q_{1}=-2\left(\alpha_{1}+\beta_{0}\right) h \\
& q_{2}=12 \alpha_{0}-\left(2 \alpha_{2}+2 \beta_{1}+\gamma_{0}\right) h^{2}, \quad Q_{0}=h^{2}\left[s_{0} \gamma_{0}+s_{1} \gamma_{1} h+s_{2} \gamma_{2} h^{2}\right] \tag{12}\\
& Q_{1}=6 \alpha_{0} s_{1}+3\left(2 \alpha_{1}+\beta_{0}\right) s_{2} h, \quad Q_{2}=12 \alpha_{0} s_{2}
\end{align*}
$$

The leading term of the truncation error now contains lower order derivatives and is given as

$$
\begin{align*}
\text { T.E. }= & \alpha_{0} h^{6}\left[\left\{5 \alpha_{0} D_{x}^{4}+10\left(\beta_{0}-2 \alpha_{1}\right) D_{x}^{3}\right\} f\right. \\
& \left.-2 \alpha_{0}\left(\alpha_{0} D_{x}^{6} u+3 \beta_{0} D_{x}^{5}\right) u\right] / 5 . \tag{13}
\end{align*}
$$

This method ((9) with (12)) has certain advantages. It does not contain $\alpha_{j}, \beta_{j}, \gamma_{j}$ for $j>2$. The derivatives $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}$, and γ_{2} need not be obtained by actual differentiation but may be replaced by the difference approximations $h \alpha_{1} \approx \delta_{2 x} a_{j} / 2$, $h^{2} \alpha_{2} \approx \delta_{x}^{2} a_{j} / 2$, etc. of second order. The resulting method would still retain its fourth-order accuracy. However, when the differential equation has a singularity at one or both of the end points of the interval [0,1], this formula does not produce accurate results of fourth order compared to the method (9) with (10) in the neighbourhood of the singularity.

Replacing f_{j} in (9) by $(\partial u / \partial t)_{j}$ and using the approximation $(\partial u / \partial t)_{j}=$
$\left[\nabla_{t} / k\left(1-\frac{1}{2} \nabla_{t}\right)\right] u_{j}$, where k is the mesh size in the t-direction, we get the difference method for the solution of (1) as

$$
\begin{align*}
& {\left[\left(2 s_{0}-\lambda Q_{0}\right)+\left(s_{1}-0.5 \lambda Q_{1}\right) \delta_{2 x}+\left(s_{2}-0.5 \lambda Q_{2}\right) \delta_{x}^{2}\right] u_{j}^{n+1}} \\
& \quad=\left[\left(2 s_{0}+\lambda Q_{0}\right)+\left(s_{1}+0.5 \lambda Q_{1}\right) \delta_{2 x}+\left(s_{2}+0.5 \lambda Q_{2}\right) \delta_{x}^{2}\right] u_{f}^{n} \tag{14}
\end{align*}
$$

where $\lambda=k / h^{2}$. We shall call (14) with (10) as "Method 1 " and (14) with (12) as "Method 2." The truncation error of Method 1 is

$$
\begin{equation*}
T_{1}=\alpha_{0}^{2}\left[-12 k^{3} u_{t u}+\frac{3}{5} k h^{4}\left(\alpha_{0} D_{x}^{6} u+3 \beta_{0} D_{x}^{5} u\right)\right]_{j}+\cdots \tag{15}
\end{equation*}
$$

and the truncation error of Method 2 is

$$
\begin{equation*}
T_{2}=-12 \alpha_{0}^{2} k^{3} u_{t u}+k h^{4} \alpha_{0} T^{*}+\cdots, \tag{16}
\end{equation*}
$$

where

$$
T^{*}=\left[\left\{5 \alpha_{0} D_{x}^{4}+10\left(\beta_{0}-2 \alpha_{1}\right) D_{x}^{3}\right\} u_{t}-2 \alpha_{0}\left(\alpha_{0} D_{x}^{6}+3 \beta_{0} D_{x}^{5}\right) u\right] / 5 .
$$

3. Stability of the Difference Schemes

The above methods can be written in the form

$$
\begin{equation*}
\left(a_{1} \delta_{x}^{2}+b_{1} \delta_{2 x}+c_{1}\right) u_{j}^{n+1}=\left(a_{2} \delta_{x}^{2}+b_{2} \delta_{2 x}+c_{2}\right) u_{j}^{n} . \tag{17}
\end{equation*}
$$

Using the von Neumann method, we find that the amplification factor of (17) satisfies

$$
\begin{equation*}
|\xi|^{2}=\frac{\left[c_{2}+2 a_{2}(x-1)\right]^{2}+4 b_{2}^{2}\left(1-x^{2}\right)}{\left[c_{1}+2 a_{1}(x-1)\right]^{2}+4 b_{1}^{2}\left(1-x^{2}\right)}=\frac{N}{N+(D-N)}, \tag{18}
\end{equation*}
$$

where $x=\cos (\beta h), N$ and D stand for the numerator and denominator, respectively. Note that $N>0$ and $D>0$. For stability, we now require

$$
\begin{align*}
g(x)= & D-N=c_{1}^{2}-c_{2}^{2}+4(1-x) \\
& \times\left[\left(c_{2} a_{2}-c_{1} a_{1}\right)+(1-x)\left(a_{1}^{2}-a_{2}^{2}\right)+(1+x)\left(b_{1}^{2}-b_{2}^{2}\right)\right] \geqslant 0 . \tag{19}
\end{align*}
$$

Note that if $c_{1}=c_{2}$, then $g(x)=4(1-x) h(x)$ and hence we require $h(x) \geqslant 0$ since $|x| \leqslant 1$. But $h(x)$ is linear. Therefore, it is sufficient to have $h(-1) \geqslant 0$ and $h(1) \geqslant 0$. This gives the conditions

$$
\begin{equation*}
\left(a_{1}-a_{2}\right)\left[2\left(a_{1}+a_{2}\right)-c_{1}\right] \geqslant 0 \quad \text { and } \quad c_{1}\left(a_{2}-a_{1}\right)+2\left(b_{1}^{2}-b_{2}^{2}\right) \geqslant 0 . \tag{20}
\end{equation*}
$$

If $c_{1} \neq c_{2}$ in (17) then we are required to satisfy (19). In this case, we require $g(-1) \geqslant 0, g(1) \geqslant 0$, and in some cases $g_{s} \geqslant 0$, where g_{s} stands for the stationary value of $g(x)$.

For Methods 1 and 2 we have

$$
\begin{equation*}
g(x)=8 \lambda\left\{\left[s_{0}-s_{2}(1-x)\right]\left[(1-x) Q_{2}-Q_{0}\right]-Q_{1} s_{1}(1-x)(1+x)\right\} \geqslant 0 \tag{21}
\end{equation*}
$$

We find that the method (14) is unconditionally stable when the following conditions are satisfied:

1. $c(x) \equiv 0$;

$$
\begin{equation*}
\left(s_{0}-2 s_{2}\right) Q_{2} \geqslant 0 \quad \text { and } \quad Q_{2} s_{0}-2 Q_{1} s_{1} \geqslant 0 \tag{22}
\end{equation*}
$$

2. $c(x) \neq 0$;
(a) If $Q_{2} s_{2}-Q_{1} s_{1} \geqslant 0$, then $Q_{0} s_{0} \leqslant 0$ and $\left(s_{0}-2 s_{2}\right)\left(2 Q_{2}-Q_{0}\right) \geqslant 0$.
(b)(i) If $0<2 Q_{1} s_{1}+Q_{2} s_{0}+Q_{0} s_{2}-4 Q_{2} s_{2}<4\left(Q_{1} s_{1}-Q_{2} s_{2}\right)$, then

$$
\begin{equation*}
\left[\left(2 Q_{1} s_{1}-Q_{2} s_{0}-Q_{0} s_{2}\right)^{2}+4 Q_{0} s_{0}\left(Q_{1} s_{1}-Q_{2} s_{2}\right)\right] \leqslant 0 \tag{23b}
\end{equation*}
$$

(ii) otherwise,

$$
\begin{equation*}
Q_{2} s_{2}-Q_{1} s_{1}<0, \quad Q_{0} s_{0} \leqslant 0, \quad\left(s_{0}-2 s_{2}\right)\left(2 Q_{2}-Q_{0}\right) \geqslant 0 \tag{23c}
\end{equation*}
$$

(c) A simple sufficient condition is

$$
\begin{equation*}
s_{0} \geqslant 0, \quad s_{0}-2 s_{2} \geqslant 0, \quad Q_{0} \leqslant 0, \quad 2 Q_{2}-Q_{0} \geqslant 0, \quad Q_{1} s_{1} \leqslant 0 \tag{23d}
\end{equation*}
$$

We now apply Methods 1 and 2 to the following test equations and determine the stability restrictions, using (21)-(23).

Test Equation 1. $u_{t}=a u_{x x}+c u ; a, c$ constants, $a>0, c \leqslant 0$. Method 1 and 2: unconditionally stable.

Test Equation 2. $u_{t}=a u_{x x}+b u_{x} ; a, b$, constants, $a \geqslant 0$. As $a \rightarrow 0$, the scalar test equation becomes the model hyperbolic test equation with no decay in the solution. For such equations, we require our formula to be conservative ($|\xi|=1$), since there is no attenuation of the Fourier coefficients.

Method 1. Unconditionally stable for all b satisfying $b^{2} h^{2} \leqslant 24 a^{2}$. The formula is conservative for the model hyperbolic equation.

Method 2. Unconditionally stable for all b. The formula is also conservative for the model hyperbolic equation.

We have also applied Methods 1 and 2 to the test equation $u_{t}=a u_{x x}+b u_{x}+c u$; a, b, c constants, $a>0, c \neq 0$. The stability conditions are clumsy because of the presence of the parameters b, c, a and are not reported here. If $b(x)=0$ and $c(x)=0$ in (1), then Method 2 is unconditionally stable when $\alpha_{0} \geqslant 0$ and either $4 \alpha_{0} \geqslant \alpha_{2} h^{2}$ or $\alpha_{1}^{2}>\alpha_{0} \alpha_{2}$ is satisfied. The first condition is usually satisfied in most of the cases.

In general, given $a(x), b(x)$, and $c(x)$ we can test the conditions (22)-(23) to
determine whether the method (14) is unconditionally stable. This procedure is adopted in the following section.

4. Convection-Diffusion Equation in Polar Coordinates

Consider the general convection-diffusion equation

$$
\begin{equation*}
u_{t}=u_{x x}+(\alpha / x) u_{x}+c u, \quad c=\text { constant }<0 \tag{24}
\end{equation*}
$$

where $0<\alpha<1, \alpha=1$ or 2 . For $\alpha=1$ and 2 , (24) corresponds to the convectiondiffusion problem in the cylindrical and spherical coordinates, respectively. The initial and boundary conditions are

$$
\begin{equation*}
u(x, 0)=f_{1}(x), \quad u_{x}(0, t)=0, \quad u(R, t)=g_{1}(t) \tag{25}
\end{equation*}
$$

Substituting $a(x)=1, b(x)=\alpha / x$, and $c(x)=c$ in Method 1, we get

$$
\begin{align*}
s_{0} & =3\left[12-\alpha(6+\alpha) p^{2}+\alpha(4+\alpha) p^{4}\right], \quad s_{1}=\alpha p\left[3-(2+\alpha) p^{2}+(1+\alpha) p^{4}\right] \\
s_{2} & =6-\alpha(2+\alpha) p^{2}+\alpha(1+\alpha) p^{4}, \quad Q_{1}=Q_{1}^{*}+c^{2} s_{1}, \quad Q_{2}=Q_{2}^{*}+\operatorname{ch}^{2} s_{2}, \\
Q_{0} & =\operatorname{ch}^{2} s_{0}, \quad Q_{1}^{*}=3 \alpha p\left[12-\left(\alpha^{2}+7 \alpha-2\right) p^{2}+(1+\alpha)(2+\alpha) p^{4}\right], \tag{26}\\
Q_{2}^{*} & =12\left[6-4 \alpha p^{2}+\alpha(1+\alpha) p^{4}\right], \quad p=h / x_{j} .
\end{align*}
$$

For $\alpha=2$, we find $s_{0}=6 s_{2}, s_{1}=p s_{2}, Q_{1}=\left(12+c h^{2}\right) p s_{2}, Q_{2}=\left(12+c h^{2}\right) s_{2}$, and $Q_{0}=6 \mathrm{ch}^{2} s_{2}$ so that the factor s_{2} can be cancelled and the method has a simple form. Using the above stability conditions, we find that the method (14) with (26) is unconditionally stable for all $c \leqslant 0$ and for all α considered here. The truncation error in the Method 1 now becomes

$$
\begin{equation*}
\text { T.E. }=-6 u_{t n} k^{3}+\frac{3}{10} k h^{4}\left(D_{x}^{6} u+\frac{3 \alpha}{x} D_{x}^{s} u\right)+\cdots \tag{27}
\end{equation*}
$$

Consider now the case $c=0$. As $x \rightarrow 0$, we get from (24)

$$
\begin{equation*}
u_{t}=(1+\alpha) u_{x x} . \tag{28}
\end{equation*}
$$

For $\alpha=1$, we use the $O\left(k^{2}+h^{4}\right)$ scheme (see [12]),

$$
\begin{equation*}
(5+12 \lambda) u_{0}^{n+1}+(1-12 \lambda) u_{1}^{n+1}=(5-12 \lambda) u_{0}^{n}+(1+12 \lambda) u_{1}^{n} \tag{29}
\end{equation*}
$$

valid at $j=0$, where we have used the condition $u_{x}(0, t)=0$. Similarly, a $O\left(k^{2}+h^{4}\right)$ scheme valid at $j=0$, when $\alpha=2$ is

$$
\begin{equation*}
(5+18 \lambda) u_{0}^{n+1}+(1-18 \lambda) u_{1}^{n+1}=(5-18 \lambda) u_{0}^{n}+(1+18 \lambda) u_{1}^{n} . \tag{30}
\end{equation*}
$$

Application of these schemes requires the solution of an $N \times N$ tridiagonal system at each time level. Recently, in [13], a fourth-order difference method was derived for the solution of the singular two-point boundary value problem

$$
\begin{equation*}
u_{x x}+(\alpha / x) u_{x}=f(x, u) \tag{31}
\end{equation*}
$$

This method can also be generalized, to obtain an $O\left(k^{2}+h^{4}\right)$ unconditionally stable scheme, to solve Eq. (24) when $c=0$. We may write this method as

$$
\begin{align*}
& {\left[\left(s_{3}-6 \lambda s_{1}\right) \delta_{x}^{2}+\left(s_{4}-6 \lambda s_{2}\right) \delta_{2 x}+12\right] u_{j}^{n+1}} \\
& \quad=\left[\left(s_{3}+6 \lambda s_{1}\right) \delta_{x}^{2}+\left(s_{4}+6 \lambda s_{2}\right) \delta_{2 x}+12\right] u_{j}^{n} \tag{32}
\end{align*}
$$

where

$$
\begin{aligned}
& s_{1}=1-s_{5} p^{2}+s_{5} s_{6} p^{4}, \quad s_{2}=p\left(\alpha+s_{5} p^{2}-s_{5} s_{6} p^{4}\right) / 2, \quad s_{3}=1-s_{5} p^{2} / 5, \\
& s_{4}=p\left[\alpha-s_{5}(2-\alpha) p^{2} / 5\right] / 2, \quad s_{5}=\alpha(2-\alpha) / 12, \quad s_{6}=\left(\alpha^{2}-24\right) / 60 .
\end{aligned}
$$

The truncation error in the method (32) is

$$
\begin{equation*}
\text { T.E. }=-k^{3} u_{t t t}+\frac{k h^{4}}{20}\left[D_{x}^{6} u+\frac{3 \alpha}{x} D_{x}^{5} u-2(3+\alpha)(2-\alpha) D_{x}^{4} u+\frac{6(2-\alpha)}{x^{2}} u_{x x t}\right]+\cdots \tag{33}
\end{equation*}
$$

Note that the truncation errors (27) and (33) are same for $\alpha=2$. However (for method (32)), when $\alpha=2$, we find tht $s_{3}-s_{4}=0$ and $s_{1}-s_{2}=0$ for $j=1$. This means that the point $j=0$ does not enter the difference equations and the system degenerates to a $(N-1) \times(N-1)$ system. The solution at $j=0$ can be obtained by interpolation using the numerical solutions at $j=1,2$, etc. As in [13] we may use

$$
\begin{equation*}
u_{0}^{n+1}=\left(144 u_{1}^{n+1}-108 u_{2}^{n+1}+48 u_{3}^{n+1}-9 u_{4}^{n+1}\right) / 75 . \tag{34}
\end{equation*}
$$

5. Computational Experiments

Computations reveal that the solutions obtained by the methods (14) with (26), and (32) are almost identical in the following problems. Therefore, the results obtained by using (14) with (26) are reported.

Example 1. $\alpha=1, c=0$ in (24) with

$$
u(x, 0)=J_{0}\left(\alpha_{0} x\right), 0 \leqslant x \leqslant 1 ; \quad u_{x}(0, t)=0 ; \quad u(1, t)=0
$$

where α_{0} is the first root of $J_{0}\left(\alpha_{0}\right)=0$. The exact solution is $u(x, t)=$ $J_{0}\left(\alpha_{0} x\right) \exp \left(-\alpha_{0}^{2} t\right)$. This problem is solved using (14) with (26), and (32) for $h=0.1$ and 0.05 . The integration is done up to $t=3.0$ for $\lambda=0.5,1,3,5$. Small values of λ
are also used to test whether the methods are of fourth order as $h \rightarrow 0, k \rightarrow 0$ (for fixed λ). Even though a number of fourth-order methods (for a fixed λ) can be constructed using the above procedure, it is found that (14) with (26) produced the best order as $h \rightarrow 0, k \rightarrow 0$ in the neighbourhood of $x=0$. Computational results reported in Table I, along with the results of [12], show the fourth-order convergence (for a fixed λ) of our methods.

Example 2. $\alpha=2, c=0$ in (24) with

$$
u(x, 0)=1-x^{2}, 0 \leqslant x \leqslant 1, \quad u_{x}(0, t)=0, \quad u(1, t)=0 .
$$

The exact solution is

$$
u(x, t)=\frac{12}{\pi^{3} x} \sum_{1}^{\infty} \frac{(-1)^{n-1}}{n^{3}} \sin (n \pi x) \exp \left(-n^{2} \pi^{2} t\right)
$$

This problem is solved using (14) with (26), and (32) for $h=0.1$ and 0.05 . Orders of the methods are again tested using small values of λ. The results are given in Table I. Computations show the fourth-order convergence (for fixed λ) of our methods.

Absolute errors at $r=0$ for small t and small λ, for both Examples 1 and 2, are given in Table II along with the results obtained by the Crank-Nicolson $O\left(k^{2}+h^{2}\right)$ scheme. These results also exhibit the $O\left(h^{4}\right)$ behaviour of Method 1 on $r=0$ even for small λ and t.

TABLE I
Maximum Absolute Errors in the Solution

		Example 1		Ref. [12]		Example 2	
λ	t	$h=0.1$	$h=0.05$	$h=0.1$		$h=0.1$	$h=0.05$
0.5	0.75	$0.259(-5)$	$0.160(-6)$	-		$0.905(-6)$	$0.573(-7)$
	1.50	$0.683(-7)$	$0.424(-8)$	$0.810(-7)$		$0.109(-8)$	$0.688(-10)$
	3.00	$0.234(-10)$	$0.146(-11)$	$0.279(-10)$		$0.807(-15)$	$0.508(-16)$
1.0	0.75	$0.143(-4)$	$0.898(-6)$			$0.423(-5)$	$0.265(-6)$
	1.50	$0.376(-6)$	$0.235(-7)$	$0.405(-6)$		$0.514(-8)$	$0.323(-9)$
	3.00	$0.129(-9)$	$0.805(-11)$	$0.139(-9)$		$0.380(-14)$	$0.240(-1)$
3.0	0.75	$0.140(-3)$	$0.879(-5)$				$0.393(-4)$
	1.50	$0.366(-5)$	$0.230(-6)$	$0.375(-5)$		$0.460(-7)$	$0.349(-5)$
	3.00	$0.124(-8)$	$0.785(-10)$	$0.127(-8)$		$0.978(-12)$	$0.225(-14)$
5.0	0.75	$0.391(-3)$	$0.246(-4)$			$0.106(-3)$	$0.693(-5)$
	1.50	$0.103(-4)$	$0.642(-6)$	$0.103(-4)$		$0.340(-6)$	$0.842(-8)$
	3.00	$0.682(-8)$	$0.219(-9)$	$0.347(-8)$		$0.840(-10)$	$0.620(-14)$

TABLE II
Absolute Error at $r=0$

λ	$t \backslash h$	Example 1				Example 2			
		Method 1		Second-order Scheme		Method 1		Second-order Scheme	
		0.1	0.05	0.1	0.05	0.1	0.05	0.1	0.05
0.	0.05	0.194(-4)	0.132(-5)	0.115(-2)	0.294(-3)	0.151(-4)			
	0.10	0.180(-4)	0.121(-5)	0.176(-2)	0.447(-3)	0.112(-5)	0.784(-7)		0.190(-3)
	0.15	0.159(-4)	$0.106(-5)$	0.200(-2)	0.505(-3)	0.952(-5)	$0.854(-7)$ $0.599(-6)$	$\begin{aligned} & 0.286(-2) \\ & 0.318(-2) \end{aligned}$	$\begin{aligned} & 0.728(-3) \\ & 0.801(-3) \end{aligned}$
0.2	0.05	0.176(-4)	0.121(-5)	$0.115(-2)$	0.294(-3)	0.418(-5)			
	0.10	0.153(-4)	0.104(-5)	$0.176(-2)$	0.446(-3)	0.108(-5)	$0.277(-6)$ $0.589(-7)$	0.763(-3)	0.191(-3)
	0.15	0.129(-4)	0.871(-6)	0.200(-2)	0.505 (-3)	0.142(-5)	0.931(-7)	$0.286(-2)$	$0.728(-3)$

It is found that the maximum error generally occurs on $r=0$ or h for all t, λ and the difference between the errors on $r=0, h$ is marginal. From these numerical results, it can be seen that the proposed higher order methods produce accurate results and the error decreases at a faster rate than the lower order methods. The computational effort is almost the same as required for the lower order methods.

References

1. E. Livne and A. Glasnfr, J. Comput. Phys. 58, 59 (1985).
2. D. L. Roberts and M. S. Selim, Int. J. Numer. Methods. Engrg. 20, 817 (1984).
3. M. Ciment, S. H. Leventhal, and B. C. Weinberg, J. Comput. Phys. 28, 135 (1978).
4. M. Ciment, S. H. Leventhal, and B. C. Weinberg, J. Comput. Phys. 29, 145 (1978).
5. J. M. Varah, SIAM J. Numer. Anal. 17, 300 (1980).
6. G. Stoyan, Z. Angew. Math. Mech. 59, 361 (1979).
7. A. R. Gourlay and J. LI. Morris, SIAM J. Numer. Anal. 17, 641 (1980).
8. A. R. Gourlay and J. LI. Morris, IMA J. Numer. Anal. 1, 347 (1981).
9. J. D. Lawson and J. LI. Morris, SIAM J. Numer. Anal. 15, 1212 (1978).
10. J. R. Cash, SIAM J. Numer. Anal. 21, 433 (1984).
11. A. R. Mitchell and K. P. Pearce, Math. Comput. 17, 426 (1963).
12. S. R. K. Iyengar and R. C. Mittal, J. Inst. Math. Appl. 22, 321 (1978).
13. S. R. K. Iyengar, R. Manohar, and Pragya Jain, unpublished.

[^0]: * This research is supported by the National Science and Engineering Council of Canada, operating Grants A3054 and the University of Saskatchewan President's NSERC.
 ${ }^{+}$Permanently at the Department of Mathematics, Indian Institute of Technology, New Delhi 110016, India.
 \ddagger Permanently at the Department of Mathematics, Regional Engineering College, Surathkal, Karnataka 574157, India.

